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Selenium

Bivalves: The Scourge of the Estuary?

Using Conceptual and Numerical 
Models to Inform Our Water 
Management Options
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My charge
Any good models on the shelf? No
How can we use conceptual models like those 
developed in DRERIP? Strengths?  Weaknesses? 
How do conceptual models differ from numerical 
models being developed in CASCADE? Strengths?  
Weaknesses? 
What’s the future for bivalve models?

Invaded 1986 and limited laboratory studies
DRERIP conceptual model
STELLA population model – not dynamically linked

Invaded 1940 and more laboratory studies
DRERIP conceptual model
STELLA population model – not dynamically linked

Status:



Bivalve models are connected to many submodels
 but must be connected to hydrodynamic models 

at a minimum to 

Distribute gametes and young
Maintain/change water quality
Deliver food to the sedentary animals



Conceptual models such as DRERIP 
models are critical for:

Designing numerical models –
 

particularly 
valuable in making connections between bivalves 
and other factors (physical transport & mixing, 
phytoplankton etc)

Highlighting data needs and prioritizing 
research needs and dollars

Examining processes which may not be modeled 
in the near term



*From Nicolini, MH and DL Penry.  2000.  Spawning, fertilization, and larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California. Pacific Science: 
54(4):377-388  NO PERMISSION FOR PUB.

Spawning &
Fertilization

Pelagic 
Veliger
Larvae* 

Recruit
(135 µm long) Pelagic

Trochophore
Larvae* 

DRERIP:  We have
 

developed
 

Corbula and Corbicula Life 
Cycle Models, the first step in building conceptual models
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*From Nicolini, MH and DL Penry.  2000.  Spawning, fertilization, and larval development of Potamocorbula amurensis (Mollusca: Bivalvia) from San Francisco Bay, California. Pacific Science: 
54(4):377-388  NO PERMISSION FOR PUB.
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DRERIP models help us build numerical models AND tell 
us what we know, how well we know it, and what critical 
data are lacking
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A similar exercise for Corbula shows different data gaps 
and needs
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understanding of controls on a species distribution
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DRERIP can help us discover critical processes DRERIP can help us discover critical processes 
before we are ready to model them. before we are ready to model them. EgEg. Why do . Why do 
the clams disappear in winter? Does it matter?the clams disappear in winter? Does it matter?

Grizzly Bay Corbula

Samples courtesy of DWR (D7)
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Migratory ducks heavily prey upon Migratory ducks heavily prey upon 
shallow water shallow water CorbulaCorbula and they are and they are 
biobio--accumulating Se.   accumulating Se.   
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However DRERIP models canHowever DRERIP models can’’t explain the intert explain the inter--
 annual variability in biomass (and thus grazing) annual variability in biomass (and thus grazing) 

peakspeaks

Samples courtesy of DWR (D7)

Grizzly Bay Corbula



DRERIP models also canDRERIP models also can’’t tell us why t tell us why CorbiculaCorbicula
 juveniles occur throughout the Delta but only juveniles occur throughout the Delta but only 

growgrow--up in the central Delta.up in the central Delta.



Shell Growth

Growth 
(increase in 

Carbon)

Consumption 
Rate

Tissue Growth

Food Quality

Carbon Available 
for Assimilation

Filtration Rate

Filtration  Efficiency

Phytoplankton

Bacteria

Zooplankton

DOM

Food Quantity

Suspended Sediment

Phytoplankton

Bacteria

Zooplankton

DOM

Population Size of 
Filter Feeders

Current Speed

Water Quality Pumping Rate

Behavior

Species

Size

Species

Size

Attached/Free?

Size

Energy for 
Growth Energy for

Reproduction

Energy for 
Respiration

Energy for
Excretion

Physiological
Stressors

Water Quality

Corbula
Growth 
Model

physical processes 
dominate

physical processes 
critical

biological variables

To do that we need to look at growth To do that we need to look at growth 
models and it becomes obvious that we models and it becomes obvious that we 
need more than a conceptual model.need more than a conceptual model.



In Summary, conceptual models such 
as DRERIP models do not

Tell us the magnitude of the bivalves ecological 
functions (eg. consuming phytoplankton)

Tell us the temporal and spatial variability of 
those ecological functions,  the causes of which 
might be exploited by water management

Tell us if the model is wrong –
 

surprises are when 
we learn

Allow us to dynamically link and manipulate 
variables



Numerical models within CASCADE
We are using STELLA models until we know 

more –
 

adapted to be spatially variable and 
responsive to stressors

Will tell us about processes and limits on 
populations –

 
I will discuss some today

Allow us to dynamically link and manipulate some 
variables

We expect and look forward to surprises 



Standard Stella
Energetic Growth
Model 

Statistical Stella
Growth Model 

Adapted from Grant and Bacher

 

1998

We are simplifying STELLA models to operate with 
statistical relationships instead of using energetic 
principles.



Output: Temporally and spatially 
varying growth rate, biomass, 
grazing rate for  phytoplankton and 
contaminant models
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Spatial resolution and physical variables known to 
dynamically interact with clam functions will be run 
sequentially to produce a “look up”

 
table for other 

models.



Step 1:  Initial Conditions: Where are the two species in 
space?  Corbula recruits settle downstream of X2 
(Corbicula juveniles settle upstream of X2!)
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In order to establish some statistical bounds to our 
results, we  will use an ensemble of salinity and 
temperature distributions in time and space to establish 
a range of distributions for each scenario
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Preliminary data from Wayne Wagner & Mark Stacey



Initial Conditions: Number of recruits is 
partially dependent on the biomass of adults 
present; there is a physical and biological basis 
for this relationship
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We assign Corbula recruit abundance based on 
biomass of adults and  antecedent outflow 
events –

 
note the grouping of abundances 

around 100, 200 and <20. 

Recruit numbers are assigned as ≈100, ≈200, ≈10 (prolonged high 
outflow), and 400 (sufficient outflow to remove adults plus  
phytoplankton ‘bloomlet’

 

in region)

physical processes critical
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We observe Corbicula recruit abundance at 
≈20 recruits/0.05 m2

 

throughout the year at 
monitoring stations

We are determining if transport 
of larvae from non-local sites, 
where temperature regimes may 
be staggered, accounts for the 
near continuous pattern of 
recruitment observed in areas like 
the central delta where many 
sources of water are mixed.

 If so changing temperatures 
throughout the tributaries and 
Delta could alter this population 
distribution

No data

physical processes critical



physical processes critical

Corbicula’s present and potential biomass 
distribution is likely based on food limitation so a 
growth relationship is critical to our model

Feb-Dec 1981

Foe & Knight 1985

Corbicula

 

growth is food limited at 
20 mg/L chlorophyll a at 15°C and 47 
mg/L at 20-24°C.  Growth was limited 
in the San Joaquin River except for two 
months in 1981 so this relationship is 
probably as good as is available for this 
system

San Joaquin River at Antioch Ship Channel

0
5

10
15
20
25
30

Jan Feb Mar Apr Ma
y

Jun Jul Aug Sep Oct Nov Dec

Ch
lo

ro
ph

yl
l a

 
(m

g/
L)



We believe that Corbula is also food limited in 
this system but we do not have laboratory data 
similar to that for Corbicula to verify our beliefs.
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Recruits in Grizzly Bay

Our preliminary analyses of field data confirm food 
limitation in bivalves in the shallow water.  



Summary
Our skill with both bivalve models is limited by 

data
Data gaps and priorities are well summarized by 

conceptual models (DRERIP)
Developing relationships for use in the numerical 

models is ongoing and is helping us define important 
processes and thresholds

Given the best data and models, ecologists are 
still struggling with multi-generation, spatially 
explicit population models of benthic animals.  We 
also expect to have problems so we are taking it 
slow, linking sub-models one step at a time
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