Chlorophyll a (ug/L)

(o))
o

N w S a1
o o o
| | |

=
o
|

Bivalves: The Scourge of the Estuary?
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Using Conceptual and Numerical
Models to Inform Our Water
Management Options
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My charge
@ Any good models on the shelf? No

@ How can we use conceptual models like those
developed in DRERIP? Strengths? Weaknesses?

@ How do conceptual models differ from numerical
models being developed in CASCADE? Strengths?

Weaknesses?
@ What's the future for bivalve models?

Status:

Invaded 1986 and limited laboratory studies
v'DRERIP conceptual model
LSTELLA population model - not dynamically linked

Invaded 1940 and more laboratory studies
v'DRERIP conceptual model
LASTELLA population model - not dynamically linked




Bivalve models are connected to many submodels
but must be connected to hydrodynamic models
at a minimum to

=Distribute gametes and young
*Maintain/change water quality
=Deliver food to the sedentary ammals




Conceptual models such as DRERIP

models are critical for:

@ Designing numerical models - particularly
valuable in making connections between bivalves
and other factors (physical transport & mixing,
phytoplankton etc)

@ Highlighting data needs and prioritizing
research needs and dollars

@Examining processes which may not be modeled
in the near term




DRERIP: We have developed Corbulaand Corbiculalife
Cycle Models, the first step in building conceptual models
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DRERIP sub-models have been connected to each Life
Cycle Model and coded for habitat and critical processes

physical processes dominate Physical processes critical
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Each DRERIP sub-model includes triggers or forcing
factors and stressors
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DRERIP models help us build numerical models AND ftell
us what we know, how well we know it, and what critical
data are lacking
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A similar exercise for Corbula shows different data gaps
and needs
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DRERIP can help us discover critical processes
before we are ready to model them. Eg. Why do
the clams disappear in winter? Does it matter?

Grizzly Bay Corbula
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Migratory ducks heavily prey upon [ yorde J
shallow water Corbu/a and they are (%

bio-accumulating Se.
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However DRERIP models can't explain the inter-
annual variability in biomass (and thus grazing)

Grizzly Bay Corbula
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DRERIP models also can't tell us why Corbicula

juveniles occur throughout the Delta but only
grow-up in the c

entral Delta.
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To do that we need to look at growth Corbula

models and it becomes obvious that we orowt
need more than a conceptual model. .
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In Summary, conceptual models such
as DRERIP models do hot

@ Tell us the magnitude of the bivalves ecological
functions (eg. consuming phytoplankton)

@Tell us the temporal and spatial variability of
those ecological functions, the causes of which
might be exploited by water management

@Tell us if the model is wrong - surprises are when
we learn

@ Allow us to dynamically link and manipulate
variables




Numerical models within CASCADE

@ We are using STELLA models until we know
more - adapted to be spatially variable and
responsive to stressors

@Will tell us about processes and limits on
populations - T will discuss some today

@ Allow us to dynamically link and manipulate some
variables

@We expect and look forward to surprises




We are simplifying STELLA models to operate with
statistical relationships instead of using energetic
principles.
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Spatial resolution and physical variables known to
dynamically interact with clam functions will be run
sequentially to produce a "look up” table for other

models.

| Output: Temporally and spatially

: varying growth rate, biomass,

| grazing rate for phytoplankton and
contaminant models

habitat

phytoplankton
biomass



Step 1. Initial Conditions: Where are the two species in
space? Corbularecruits settle downstream of X2
(Corbicula juveniles settle upstream of X2!)

station is at X2 of 72; as
long as X2 meets or exceeds
that level we get recruits
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In order to establish some statistical bounds to our
results, we will use an ensemble of salinity and
temperature distributions in time and space to establish
a range of distributions for each scenario

0.65-

[+
X
>

0.6

Grantline Tracy
SJ Antioch
Middle Tracy
SJ Prisoner
Wickland Pier
Sac Martinez
Stockton Burns
Old Tracy

SJ Navy Bridge
Sac Mallard

SJ Mossdale
Sac Rio Vista
Sac Hood

©
1)
3

o©
o0

XOOX KOk O++

AWater Temp /AAir Temp
+

0.45-

*

O

0.4 | | | | | | | | | |
-122.3 -122.2 -122.1 -122 -121.9 -121.8 -121.7 -121.6 -121.5 -121.4 -121.3

Longitude

Preliminary data from Wayne Wagner & Mark Stacey



Initial Conditions: Number of recruits is
partially dependent on the biomass of adults
present; there is a physical and biological basis
for this relationship
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We assign Corbularecruit abundance based on
biomass of adults and antecedent outflow

events - note the grouping of abundances
around 100, 200 and <20.
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Recruit numbers are assigned as #100, #200, #10 (prolonged high
outflow), and 400 (sufficient outflow to remove adults plus
phytoplankton ‘bloomlet’ in region)
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We observe Corbicularecruit abundance at

220 recruits/0.05 m? throughout the year at
monitoring stations

Franks Tract Near Old River

We are determining if transport
of larvae from non-local sites,
where temperature regimes may
be staggered, accounts for the
near continuous pattern of
recruitment observed in areas like
the central delta where many
sources of water are mixed.
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Corbiculas present and potential biomass
distribution is likely based on food limitation so a
growth relationship is critical to our model

Corbicula growth is food limited at
20 mg/L chlorophyll a at 15°C and 47
mg/L at 20-24°C. Growth was limited
in the San Joaquin River except for two
months in 1981 so this relationship is
probably as good as is available for this
system
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We believe that Corbulais also food limited in
this system but we do not have laboratory data
similar to that for Corbiculato verify our beliefs.

Recruits in Grizzly Bay
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Our preliminary analyses of field data confirm food
limitation in bivalves in the shallow water.



Summary

@Our skill with both bivalve models is limited by
data

@Data gaps and priorities are well summarized by
conceptual models (DRERIP)

@Developing relationships for use in the numerical
models is ongoing and is helping us define important
processes and thresholds

@Given the best data and models, ecologists are
still struggling with multi-generation, spatially
explicit population models of benthic animals. We
also expect to have problems so we are taking it
slow, linking sub-models one step at a time
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