


Monitoring Objectives

1 |[mplementation Monitoring:
Document as-built conditions

® Effectiveness Monitoring:

Document whether/to what extent project
objectives were met



Monitoring Strategies:
One Size Does Not Fit All
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Hypothetical Case Study
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Objectives/Hypotheses

Introducing coarse sediment finer than the existing bed
surface (i.e., with a Dg, that is mobilized by the Q, 5) at a
rate equal to predicted annual transport will ...

Increase the volume of alluvial sediment storage in the
channel,;

Result in fining of the bed surface at and downstream of
the introduction site;

Reduce the bed mobilization and scour threshold;
Increase sediment transport rates; and

Reduce the relative volume of fine sediment (<2 mm) in
the bed.



Hypothesis 1:
Increase the volume of alluvial
sediment storage In the channel

a  Aerial photographs
% Topographic surveys
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Topographic Surveys:
Cross Sections and Profiles
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Recommended gravel introduction morphology at Cross Section 878+25.
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Recommended gravel introduction morphology at Cross Section 891+80.

Left bank looking downstream Right bank

e 2-21-00 Ground surface
Ground surface after gravel introduction
— - — - 2:21-00 Water surface (Q=200 cfs)

WY1997 Peak water surface (Q= ~15,000 cfs)

90 100 110 120 130 140
Distance from left bank pin (ft)




Peltier Valley Bridge longitudinal profile showing recommended gravel introduction morphology
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Topographic Surveys:
Contour Mapping
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Hypothesis 2:
Result in fining of the bed
surface at and downstream of
the introduction site

@  Pebble Counts
@  Facies Mapping
@  Isohyetal Mapping
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Facies Mapping with Pebble Counts

Sand  Gravel
Facies Facies
s G
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CGS 1CSG
mCG
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Cobble Boulder
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Facies
c
GC
SGC
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SiC
SIGC

Source: Stillwater Sciences
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@ Pebble Count Location
—Cross-section
— Road

Direction of Flow



Pebble Count # 1 Pebble Count # 2
Longitudinal Profile Station 435 Longitudinal Profile Station 417

Cumulative % finer

Cumulative % finer

Grain size (mm) Grain size (mm)

Pebble Count # 3 Pebble Count # 4

Longitudinal Profile Station 717 Longitudinal Profile Station 1,005

Cumulative % finer

Cumulative % finer

Grain size (mm) Grain size (mm)




Isohyetal Mapping
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Hypothesis 3:
Reduce the bed mobilization
and scour thresholds

I Tracer rocks
| Scour cores
| Scour chains




Tracer Rocks
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Interpreting Tracer Rock Results

Differential mobility

No mobility (incipient range)

Total mobility

80% of D g's
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Tracer Rock Options

LITHOLOGY PAINT

MAGNETS/
RADIOTRANSMITTERS




MeNEIL
SAMPLER

cd
02 _
1) UNDISTURBED
STREAMBED

5) McNEIL SAMPLER
REMOVED AND
GROUND SURFACE (A)
SURVEYED

2) MeNEIL SAMPLER
INSERTED APPROX.
1.5" INTO STREAMBED
AT SPECIFIC LOCATION
ON CROSS SECTION

6) FLOOD INUNDATES
SURFACE AND
SCOURS BED

Scour Cores

3) BED MATERIAL
REMOVED AND
REMOVAL DEPTH
SURVEYED

7) FLOOD RECEDES,

BED REDEPOSITED

AND NEW GROUND
SURFACE (B) SURVEYED

%

PIT BACK—FILLED
WITH CLEAN,
PAINTED GRAVELS

8) BED MATERIAL EXCAVATED
TO TOP OF REMAINING
PAINTED GRAVELS
AND TOP (C) SURVEYED

SCOUR DEPTH = A - C
DEPOSITION DEPTH = B - C




Hypothesis 4:
Increase sediment transport rates

a Helley-Smith samples
m  Sediment traps
@  Reach-specific sediment budgets




Transport Sampling

-
v
@
)
a1}
o
2
]
=
o
vy
(i}
wy
i |
[+]
@
=
(1]
=
c
o
s
wy
=

=—=Bedload Sampling Periods

—— Discharge at La Grange, adjusted for travel time to reach Riffle 4B

12:00 : ; 12:00

Saturday 3/18/2000 Sunday 3/19/2000




Transport Sampling
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Calibrating/Testing Sediment
Transport Models
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Reach-specific Sediment Budgets

|- AS =0

Can combine
transport
monitoring with
detailed
topographic
surveys to
document total flux



Hypothesis 5:
Reduce the relative volume of fine
sediment (<2 mm) Iin the bed

m  Permeabllity
F Bulk Samples




Permeability
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Figure 10. Tuolumne River permeability (November 1999).




Spatial Variability in Permeability
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Figure 11. Tuolumne River permeability -- summary by riffle (November 1999).




1 2) McNEIL SAMPLER 3) BED MATERIAL
STREAMBED INSERTED APPROX. REMOVED AND

1.5" INTO STREAMBED REMOVAL DEPTH
AT SPECIFIC LOCATION SURVEYED
CROSS SECTION




Issues/Parting Thoughts

One Size Does Not Fit All

Good experimental design (i.e., spatial variability: need to
understand sampling required for the desired analytical power)

Need for adequate baseline data and/or control sites

Must be threshold-driven (rather than calendar-driven) ... funding
cycles?

Expect to require many years of effectiveness monitoring to test a
sufficient range of flows

Need for good field data to test physical-process models ... test
models of linkages between physical processes and biotic
responses
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Conceptual framework of geomorphic and
biotic relationships on alluvial rivers

SUPPLY/CONTROL

PROCESSES

FORM

HABITAT

BIOTA

Watershed Inputs

Human Land

Use and Flow
Regulation

* water * energy
* sediment » large woody debris
« nutrients * chemical pollutants

Fluvial Geomorphic Processes

 sediment transport/deposition/scour
« channel migration and bank erosion
« floodplain construction and inundation
« surface and groundwater interactions

Geomorphic Attributes

» channel morphology (size, slope, shape,
bed and bank composition)

« floodplain morphology

» water turbidity and temperature

Habitat Structure, Complexity, and Connectivity

« instream aquatic habitat

» shaded riparian aquatic habitat

« riparian woodlands

» seasonally inundated floodplain wetlands

Biotic Responses

(Aquatic, Riparian, and Terrestrial Plants and Animals)

» abundance and distribution of native and exotic species
« community composition and structure
« food web structure

Natural
Disturbance




GEOMORFPHIC
CONDITIONS

CONDITION

PRESENT

arse sediment
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Figure 12, Predicted mean survival-to-emergence (+/- 1.96 S.E.) - November 1999,
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Clear Creek below Whiskeytown Dam coarse sediment transport capacity curves
under existing bed surface conditions and under simulated gravel transfusion
condition
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